Regulatory Impacts of Biogas-fired Internal Combustion Engines

Kit Liang, PE, Malcolm Pirnie

Air, Water & Energy: Sustainability for Wastewater Treatment Plants

California Water Environment Association
Santa Ana River Basin Section
June 11, 2009
Agenda

• Background
 • Biogas use for IC engines
 • Engine type/ emissions
• Regulations
 • SCAQMD - Rule 1110.2, 1401, 1402
 • USEPA – NSPS, MACT
• Case Study – Orange County Pilot Testing
What is Biogas?

Produced from anaerobic decomposition of organic materials

Primary sources

- Landfill
- Wastewater treatment - Digester gas

Renewable fuel
Biogas Composition

- Methane (CH₄) (45 – 65 %)
- Carbon Dioxide (CO₂) (35 – 55 %)
- Contaminants:
 - VOCs
 - Sulfur
 - Siloxanes
 - Ammonia
 - Miscellaneous - PM, moisture
Where is biogas used at WWTP?

- Combustion
 - IC Engines
 - Boilers
 - Turbines
 - Flares
- Clean and compress to liquefied or compressed natural gas
- Release to atmosphere
Reciprocating Internal Combustion Engines (RICE)

Cover a broad range of output horsepower and speeds

Widespread applications

- Good fuel economy
- Durability
- Reliability
- Compactness
- Reasonable first cost
Classification of RICE

Engines are classified according to their fuel type and ignition method

- **Gas Engines** - use gaseous fuel and are spark-ignited (SI)
- **Diesel Engines** – compression ignition (CI) engines operate on liquid fuel oil
- **Dual-Fuel Engines** – two modes of operation: one is operated as a diesel engine; in the other mode a “pilot ‘injection of liquid diesel fuel ignites as in a diesel engine and subsequently ignites the main charge of fuel gas and air mixture – EPA classified as spark-ignited
Emissions from Biogas Combustion

- Criteria pollutants
 - NOx, CO, VOCs, SOx
- Hazardous air pollutants (HAPs)
 - Formaldehyde
 - Acetaldehyde
 - Acrolein
 - Methanol
- Biogas-fired engines are major contributors to facility-wide emissions from WWTP
Type of Regulations

- **Source categories**
 - Internal Combustion Engines (ICE)
- **Facility-wide emissions**
- **Existing versus new/modified sources**
- **Pollutant type**
 - Criteria (NOx, CO, SOx, VOCs)
 - Air toxics or HAPs (e.g., formaldehyde)
General Regulation for ICE

- Local – South Coast Air Quality Management District (SCAQMD)
- Federal
 - Title V – Operating Permit (facility-wide)
 - Source Categories
 - New Source Performance Standards (NSPS)
 - National Emission Standards for Hazardous Air Pollutants (NESHAPS)
 - Maximum Achievable Control Technology (MACT)
SCAQMD Regulations

- Rule 1110.2
 - Gaseous and liquid-fuel engines
 - Units > 50 BHP
- Rules 1300 to 1316
 - Criteria Pollutants (CO, NOx, PM10, SOx, VOCs)
- Rule 1401 and 1402
 - Toxic Air Contaminants (e.g., formaldehyde)
Rule 1110.2 – Biogas fired IC Engines

- Applies to IC Engines > 50 BHP
- Biogas-fired engine – requirements
 - Engines use > 90% biogas
 - Unless SCAQMD provides variance
- Existing NOx limits:
 - Natural Gas - 36 ppm
 - Biogas - 36 ppm or calculated based on efficiency correction factor (ECF)
SCAQMD Rule 1110.2

- Regulation applies to existing IC engines
- Schedule
 - Final amendment issued Feb 2008
 - **Technology Evaluation** for units operating on biogas by July 2010
 - Natural gas-fired engines meets limits by July 2011
 - Biogas-fired engines meet limits by July 2012

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Existing</th>
<th>Future</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx</td>
<td>36 to ~ 45</td>
<td>11</td>
</tr>
<tr>
<td>CO</td>
<td>2000</td>
<td>250</td>
</tr>
<tr>
<td>VOC</td>
<td>100</td>
<td>30</td>
</tr>
</tbody>
</table>

* Concentration in units of parts per million at volume dry @ 15% O2)
Source of Siloxanes at WWTP

Siloxanes are used in personal care products.

Common isomers:
- D4 - Octamethylcyclotetrasiloxane
- D5 - Decamethylcyclopentasiloxane
Why are Siloxanes a Problem?

Silica Formation

D4 and D5 - exist in the gas phase of biogas

Oxidation

Forms Silica: a particulate

Fouls fuel systems, combustion chambers and post-combustion controls.
SCAQMD Regulations – All Sources

- Rules 1300 to 1316
 - Criteria Pollutants (CO, NOx, PM10, SO2, VOCs)
 - Best Available Control Technology (BACT)

- Rule 1401 and 1402
 - Toxic Air Contaminants (formaldehyde)
 - Rule 1401 – new/modified source
 - Rule 1402 – existing facility-wide

- Biogas engines included
Federal Regulations – Source Categories

- **40 CFR 60 - New Source Performance Standard (NSPS)**
 - Emissions limits for new sources (NOx, CO, VOCs)
- **40 CFR 63 - Maximum Achievable Control Technology (MACT) – Air Toxics**
 - List of 187 hazardous air pollutants (HAPs)
 - Major or non major (area) source
 - 10 tpy of individual and 25 tpy of total HAPS
 - Emissions limits for existing and new engines
- **Emissions limits**
 - Engine type, size and usage
• Subpart JJJJ – SI Engines (1/18/08)
 • Gaseous fuels – biogas and natural gas
 • Emissions limits for NOx, CO, VOCs
 • Dual fuel – diesel fuel, biogas, natural gas
• Subpart IIII – CI Engines (7/11/06)
 • Diesel fuel
Subpart JJJJJ Requirements for Biogas-fired Engines

• New and modified units after 6/12/06
• Emissions limits are based on engine type and fuel type
• Emission limits:
 • NOx – 150 to 220 ppmvd*
 • CO – 610 ppmvd*
 • VOC – 80 ppmvd*

* ppmvd – parts per million by volume dry @ 15% O2
• Existing Rule – (7/15/04)
 • > 500 HP engines at major source
• Proposed Amendments (3/5/09)
 • < 500 HP at major source
 • All engines at non-major (area) sources
• Additional provisions:
 • Emergency engines
 • Startup, shutdown, and maintenance conditions
Existing rule – (6/15/04)

> 500 HP at major source

Formaldehyde primary air toxic

Emission limit based on engine type:

- CO: Reductions range from 58% to 93% ; or
- Formaldehyde emission limit from 0.35 to 12 ppmvd

No emission limits or controls required for biogas-fired engines
Proposed amendments to rule (3/5/009)
- IC engines < 500 HP at major source
- All engines at non-major (area) sources
- Additional provisions for:
 - Emergency engines
 - Startup, shutdown, and maintenance
- Use carbon monoxide as surrogate for formaldehyde
40 CFR 63 – Subpart ZZZZZ – Biogas Engines

- No limit for engines >500 hp at major source (final Rule)
- Proposed Amendment (3/5/09)
 - CO Limit: 177 ppmvd
 - From 50 to 500 HP at major sources
 - > 500 hp at no-major sources
Orange County Sanitation District

- Two Wastewater Treatment Plants
 - Plant 1 – Fountain Valley ~ 90 MGD
 - Plant 2 – Huntington Beach ~ 160 MGD
- Central Generation System
 - Plant 1 – 3 ICE (2,500 KW each)
 - Plant 2 – 5 ICE (3,000 KW each)
AB2588 and Rule 1402 Control of Toxic Air Contaminants

- Existing facilities
- Specified risk limits
- Facility-wide emissions
- Public notification and inventory requirements
Pilot Testing: Reduce Formaldehyde and CO

- Catalytic oxidizer performance
 - Emission Reduction: formaldehyde, CO
 - No vendor guarantees for performance
- Impact of digester gas contaminants on catalytic oxidizers
- Digester gas cleaning system performance
- Feasibility of operating catalytic oxidizer with digester gas cleaning
Catalytic Oxidizer and Digester Gas Cleaning System
Catalytic Oxidizer: Emissions Testing

- **Portable Analyzer – Weekly Testing**
 - Real-time
 - CO
 - NOx
- **EPA Method 323 – Monthly Testing**
 - Wet chemistry method
 - Formaldehyde
- **Fourier Transform Infrared (FTIR)**
 - Real Time
 - NOx, CO, formaldehyde
 - Speciated VOCs and amines
Method 323: Sampling and Set-up
Sampling Port Locations

Cat Oxd Inlet

Cat Oxd Outlet

Stack Outlet
Pilot Testing Summary – Catalytic Oxidizer with Digester Gas Cleaning System

• Emissions
 • CO: 90 - 95 % reduction
 • NOx : 15 -20 % increase
 • Limitation of sampling measurements
 • Catalyst Rx with other nitrogen-bound compounds
 • Formaldehyde: 55 to 75% reduction
Pilot Testing Summary – Catalytic Oxidizer with Digester Gas Cleaning System

- Engine performance
 - No issues with temperature increase or pressure drops
 - Reduced engine maintenance
- Catalytic oxidizer currently still operating with no catalyst replacement (> 1 year)
What’s Next for OCSD?

- Future SCAQMD Rule 1110.2 requirements
- Technology evaluation for meeting new limits
- Second pilot testing program to control NOx, CO and air toxics emissions
- Information to SCAQMD by May 2010
Summary

- SCAQMD Rules are more restrictive than existing NSPS and MACT regulations
- Proposed MACT regulations affects IC engines at non-major facilities.
- Facilities needs to be plan for the future requirements.
QUESTIONS AND ANSWERS